3,560 research outputs found

    Evaluation of the Single Keybit Template Attack

    Get PDF
    Side Channel leakage is a serious threat to secure devices. Cryptographic information extraction is possible after examining any one of the various side channels, including electromagnetic. This work contributes a new method to achieve such a purpose. The Single Keybit Template Attack (SKTA) is introduced as a means to extract encryption keys from embedded processors and other integrated circuit devices performing DES encryptions by passively monitoring and exploiting unintentional RF emissions. Key extraction is accomplished by creating two templates for each bit value of the key based on instantaneous amplitude responses as a device executes DES operations. The resultant templates are input to a Maximum Likelihood processor for subsequent template discrimination with RF emissions captured from a target device. Plaintext and ciphertext are not necessary for SKTA to function. Using 8-bit microcontroller devices and experimentally collected side channel signals, key extraction is possible after examination of approximately 300 RF emission traces. After consideration of SKTA\u27s capabilities, embedded processors using DES to process sensitive data warrants reconsideration

    Universal shape law of stochastic supercritical bifurcations: Theory and experiments

    Full text link
    A universal law for the supercritical bifurcation shape of transverse one-dimensional (1D) systems in presence of additive noise is given. The stochastic Langevin equation of such systems is solved by using a Fokker-Planck equation leading to the expression for the most probable amplitude of the critical mode. From this universal expression, the shape of the bifurcation, its location and its evolution with the noise level are completely defined. Experimental results obtained for a 1D transverse Kerr-like slice subjected to optical feedback are in excellent agreement.Comment: 5 pages, 5 figure

    A new class of semiclassical wave function uniformizations

    Get PDF
    We present a new semiclassical technique which relies on replacing complicated classical manifold structure with simpler manifolds, which are then evaluated by the usual semiclassical rules. Under circumstances where the original manifold structure gives poor or useless results semiclassically the replacement manifolds can yield remarkable accuracy. We give several working examples to illustrate the theory presented here.Comment: 12 pages (incl. 12 figures

    Molecular Gas Dynamics in NGC 6946: a Bar-driven Nuclear Starburst "Caught in the Act"

    Get PDF
    We present high angular resolution ~1" and 0.6" mm-interferometric observations of the 12CO(1-0) and 12CO(2-1) line emission in the central 300pc of the late-type spiral galaxy NGC6946. The data, obtained with the IRAM Plateau de Bure Interferometer (PdBI), allow the first detection of a molecular gas spiral in the inner ~10" (270pc) with a large concentration of molecular gas (M(H_2) ~1.6x10^7M_sun) within the inner 60pc. This nuclear clump shows evidence for a ring-like geometry with a radius of ~10pc as inferred from the p-v diagrams. Both the distribution of the molecular gas as well as its kinematics can be well explained by the influence of an inner stellar bar of about 400pc length. A qualitative model of the expected gas flow shows that streaming motions along the leading sides of this bar are a plausible explanation for the high nuclear gas density. Thus, NGC6946 is a prime example of molecular gas kinematics being driven by a small-scale, secondary stellar bar.Comment: accepted for publication in the Astrophysical Journal; 47 pages, 17 figures, 1 tabl

    Quasi-experimental study designs series-paper 6: risk of bias assessment.

    Get PDF
    OBJECTIVES: Rigorous and transparent bias assessment is a core component of high-quality systematic reviews. We assess modifications to existing risk of bias approaches to incorporate rigorous quasi-experimental approaches with selection on unobservables. These are nonrandomized studies using design-based approaches to control for unobservable sources of confounding such as difference studies, instrumental variables, interrupted time series, natural experiments, and regression-discontinuity designs. STUDY DESIGN AND SETTING: We review existing risk of bias tools. Drawing on these tools, we present domains of bias and suggest directions for evaluation questions. RESULTS: The review suggests that existing risk of bias tools provide, to different degrees, incomplete transparent criteria to assess the validity of these designs. The paper then presents an approach to evaluating the internal validity of quasi-experiments with selection on unobservables. CONCLUSION: We conclude that tools for nonrandomized studies of interventions need to be further developed to incorporate evaluation questions for quasi-experiments with selection on unobservables

    Why Chromatic Imaging Matters

    Full text link
    During the last two decades, the first generation of beam combiners at the Very Large Telescope Interferometer has proved the importance of optical interferometry for high-angular resolution astrophysical studies in the near- and mid-infrared. With the advent of 4-beam combiners at the VLTI, the u-v coverage per pointing increases significantly, providing an opportunity to use reconstructed images as powerful scientific tools. Therefore, interferometric imaging is already a key feature of the new generation of VLTI instruments, as well as for other interferometric facilities like CHARA and JWST. It is thus imperative to account for the current image reconstruction capabilities and their expected evolutions in the coming years. Here, we present a general overview of the current situation of optical interferometric image reconstruction with a focus on new wavelength-dependent information, highlighting its main advantages and limitations. As an Appendix we include several cookbooks describing the usage and installation of several state-of-the art image reconstruction packages. To illustrate the current capabilities of the software available to the community, we recovered chromatic images, from simulated MATISSE data, using the MCMC software SQUEEZE. With these images, we aim at showing the importance of selecting good regularization functions and their impact on the reconstruction.Comment: Accepted for publication in Experimental Astronomy as part of the topical collection: Future of Optical-infrared Interferometry in Europ

    The Leading Particle Effect from Heavy-Quark Recombination

    Full text link
    The leading particle effect in charm hadroproduction is an enhancement of the cross section for a charmed hadron D in the forward direction of the beam when the beam hadron has a valence parton in common with the D. The large D+/D- asymmetry observed by the E791 experiment is an example of this phenomenon. We show that the heavy-quark recombination mechanism provides an economical explanation for this effect. In particular, the D+/D- asymmetry can be fit reasonably well using a single parameter whose value is consistent with a recent determination from charm photoproduction.Comment: Revtex file, 4 pages, 3 figure

    Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family

    Get PDF
    Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes

    The Nature of the Warm/Hot Intergalactic Medium I. Numerical Methods, Convergence, and OVI Absorption

    Full text link
    We perform a series of cosmological simulations using Enzo, an Eulerian adaptive-mesh refinement, N-body + hydrodynamical code, applied to study the warm/hot intergalactic medium. The WHIM may be an important component of the baryons missing observationally at low redshift. We investigate the dependence of the global star formation rate and mass fraction in various baryonic phases on spatial resolution and methods of incorporating stellar feedback. Although both resolution and feedback significantly affect the total mass in the WHIM, all of our simulations find that the WHIM fraction peaks at z ~ 0.5, declining to 35-40% at z = 0. We construct samples of synthetic OVI absorption lines from our highest-resolution simulations, using several models of oxygen ionization balance. Models that include both collisional ionization and photoionization provide excellent fits to the observed number density of absorbers per unit redshift over the full range of column densities (10^13 cm-2 <= N_OVI <= 10^15 cm^-2). Models that include only collisional ionization provide better fits for high column density absorbers (N_OVI > 10^14 cm^-2). The distribution of OVI in density and temperature exhibits two populations: one at T ~ 10^5.5 K (collisionally ionized, 55% of total OVI) and one at T ~ 10^4.5 K (photoionized, 37%) with the remainder located in dense gas near galaxies. While not a perfect tracer of hot gas, OVI provides an important tool for a WHIM baryon census.Comment: 22 pages, 21 figures, emulateapj, accepted for publication in Ap
    • …
    corecore